Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(3): 87, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367090

RESUMO

The ecotoxic effect of Zn species arising from the weathering of the marmatite-like sphalerite ((Fe, Zn)S) in Allium cepa systems was herein evaluated in calcareous soils and connected with its sulfide oxidation mechanism to determine the chemical speciation responsible of this outcome. Mineralogical analyses (X-ray diffraction patterns, Raman spectroscopy, scanning electron microscopy and atomic force microscopy), chemical study of leachates (total Fe, Zn, Cd, oxidation-reduction potential, pH, sulfates and total alkalinity) and electrochemical assessments (chronoamperometry, chronopotentiometry, cyclic voltammetry, and electrochemical impedance spectroscopy) were carried out using (Fe, Zn)S samples to elucidate interfacial mechanisms simulating calcareous soil conditions. Results indicate the formation of polysulfides (Sn2-), elemental sulfur (S0), siderite (FeCO3)-like, hematite (Fe2O3)-like with sorbed CO32- species, gunningite (ZnSO4·H2O)-like phase and smithsonite (ZnCO3)-like compounds in altered surface under calcareous conditions. However, the generation of gunningite (ZnSO4·H2O)-like phase was predominant bulk-solution system. Quantification of damage rates ranges from 75 to 90% of bulb cells under non-carbonated conditions after 15-30 days, while 50-75% of damage level is determined under neutral-alkaline carbonated conditions. Damage ratios are 70.08 and 30.26 at the highest level, respectively. These findings revealed lower ecotoxic damage due to ZnCO3-like precipitation, indicating the effect of carbonates on Zn compounds during vegetable up-taking (exposure). Other environmental suggestions of the (Fe, Zn)S weathering and ecotoxic effects under calcareous soil conditions are discussed.


Assuntos
Cebolas , Poluentes do Solo , Compostos de Zinco , Solo/química , Sulfetos/química , Tempo (Meteorologia) , Poluentes do Solo/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-36767268

RESUMO

Arsenic (As) is a common contaminant in drinking water in northeastern Mexico, which reduces the expression of cytochrome P450 (CYP 450). This enzyme group metabolizes numerous drugs, such as oral antidiabetic drugs such as pioglitazone (61% CYP 3A4, 49% CYP 2C8). When CYP 450's function is inadequate, it has decreased therapeutic activity in type 2 diabetes mellitus (T2DM). This study aimed to establish the effect of As on pioglitazone metabolism in patients with T2DM. METHODOLOGY: Urine, water, and plasma samples from a healthy population (n = 11) and a population with T2DM (n = 20) were obtained. Samples were analyzed by fluorescence spectroscopy/hydride generation (As) and HPLC (pioglitazone). Additionally, CYP 3A4 and CYP 2C8 were studied by density functional theory (DFT). RESULTS: The healthy and T2DM groups were exposed via drinking water to >0.010 ppm, Ka values with a factor of 4.7 higher, Cl 1.42 lower, and ABCt 1.26 times higher concerning the healthy group. In silico analysis (DFT) of CYP 3A4 and CYP 2C8 isoforms showed the substitution of the iron atom by As in the active sites of the enzymes. CONCLUSIONS: The results indicate that the substitution of Fe for As modifies the enzymatic function of CYP 3A4 and CYP 2C8 isoforms, altering the metabolic process of CYP 2D6 and CYP 3A4 in patients with T2DM. Consequently, the variation in metabolism alters the bioavailability of pioglitazone and the expected final effect.


Assuntos
Arsênio , Diabetes Mellitus Tipo 2 , Água Potável , Humanos , Pioglitazona/metabolismo , Arsênio/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Disponibilidade Biológica , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/metabolismo
3.
Neurosci Lett ; 778: 136611, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364128

RESUMO

OBJECTIVE: The main aim of the current study was to investigate whether the expression levels of the HTR2A and MAOA genes are altered in the postmortem brain of suicide victims from Mexican population. METHODS: On the basis of a case- control study, we examined the expression levels of HTR2A and MAOA genes in the postmortem prefrontal cortex (Brodmann area 8/9) and hypothalamus (ventromedial nucleus) tissues from 20 suicide victims and 20 control subjects from a Mexican population. Gene-expression profile quantification was carried out by qPCR and determined by the 2-ΔΔCt method. RESULTS: In suicide victims, the expression levels of the HTR2A gene were significantly higher in the prefrontal cortex. In contrast, the expression of the MAOA gene in the hypothalamus of the suicide victims was significantly higher than in the control subjects. These results were consistent regardless of age, sex, postmortem interval, or pH of brain tissue. CONCLUSION: The evidence suggests that the pattern of differential expression of HTR2A and MAOA genes in the brain may be involved in suicide, providing a possible molecular basis for the brain abnormalities in suicide victims.


Assuntos
Suicídio , Encéfalo/metabolismo , Estudos de Casos e Controles , Humanos , Hipotálamo , Córtex Pré-Frontal/metabolismo
4.
Drug Dev Res ; 81(8): 978-984, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32737935

RESUMO

Clinical and preclinical research that contributes pain palliation has suggested that drugs favor the expected effects and minimize the adverse effects. Among the most widely used strategies is the combination of analgesic drugs among those in the same group, with those in another group of analgesics or with co-adjuvants (nonanalgesic drugs or elements of traditional medicine). This work aims to evaluate the interaction between eugenol (EUG) and diclofenac (DFC) on nociception in the presence of a noxious stimulus through the formalin test and isobolographic analysis. The results indicate that EUG, DFC, or the combination of both produce an antinociceptive effect in rodents (p ≤ 0.05). Local co-administration of EUG and DFC gave a theoretical effective dose (Zadd ) 2,936.27 ± 155.33 µg/kg (p ≤ 0.05) significantly higher as compared to the effective experimental doses (Zmix ) of 866.89 ± 0.02 µg/kg in phase 1 and 292.88 ± 0.05 µg/kg in phase 2, with an interaction index of 0.29 and 0.09, respectively. These data allow concluding that the interaction derived from the joint administration of EUG and DFC, in the rodent at a local level, is synergistic.

5.
Materials (Basel) ; 12(24)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835506

RESUMO

Potassium hexatitanate (PHT) with chemical formula K2Ti6O13 has a tunnel structure formed by TiO2 octahedra sharing edges or corners and with the potassium atoms located in the tunnels. This material has attracted great interest in the areas of photocatalysis, reinforcement of materials, biomaterials, etc. This work summarizes a large number of studies about methods to prepare PHT since particle size can be modified from millimeter to nanometric scale according to the applied method. Likewise, the synthesis method has influenced the material properties as band-gap and the final mechanical performance of composites when the reinforcement is PHT. The knowing of synthesis, properties and applications of PHT is worthwhile for the design of new materials and for the development of new applications taking advantage of their inherent properties.

6.
Chemosphere ; 210: 320-333, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30005354

RESUMO

A geochemical-environmental mapping was carried for a low polluted forest in North-western Mexico (Santiago Papasquiaro mining area), as part of the North American forests accounting for environmental behavior of arsenic (As), lead (Pb), zinc (Zn) and copper (Cu) in soil and tree components (stem wood and aciculums). Spectroscopic and microscopic techniques along with standard protocols were used to determine the mineralogical phases containing these elements, and their corresponding spatial distributions in soil and forests and mobility. In soil, total As, Pb, Zn and Cu ranged from 4.9 to 98.3, 19.6 to 768.6, 19.6 to 407.1, and 1.6 to 63.8 mg kg-1, respectively. Ultrafine particles (<5-10 µm) of arsenopyrite and sphalerite (and complex Zn-Fe phase) were the main As and Zn-bearing phases determined by SEM-EDS, respectively. Complex Pb-Cu-Fe and Cu-O oxide-like phases were the only ones containing Pb and Cu, respectively. Mobility was low for Pb, Zn and Cu, whereas a significant mobility was assessed for As. Concentrations vs. depth profiles suggested progressive accumulations of As, Pb, Zn and Cu in top soil. Total As, Pb, Zn and Cu in pine stem wood varied from 11.5 to 184.5, 98.9 to 7359.8, 3242.7 to 22197.3, 689.2 to 7179.6 µg kg-1, respectively. The respective concentrations in the pine needles ranged from 50 to 624.2, 100 to 16353.1, 120 to 46440.9 and 720 to 7200 µg kg-1, indicating an active bioaccumulation of As, Pb, Zn and Cu. A prospective environmental behavior was discussed for As, Pb, Zn and Cu in the low-polluted forest.


Assuntos
Arsênio/análise , Cobre/análise , Ecossistema , Chumbo/análise , Poluentes do Solo/análise , Solo/química , Zinco/análise , Arsênio/metabolismo , Disponibilidade Biológica , Cobre/metabolismo , Monitoramento Ambiental , Florestas , Chumbo/metabolismo , México , Poluentes do Solo/metabolismo , Zinco/metabolismo
7.
J Ind Microbiol Biotechnol ; 45(8): 669-680, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29858724

RESUMO

Chemical and surface analyses are carried out using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM-EDS), atomic force microscopy (AFM), confocal laser scanning microscopy (CLSM), glow discharge spectroscopy (GDS) and extracellular surface protein quantification to thoroughly investigate the effect of supplementary As(V) during biooxidation of arsenopyrite by Acidithiobacillus thiooxidans. It is revealed that arsenic can enhance bacterial reactions during bioleaching, which can strongly influence its mobility. Biofilms occur as compact-flattened microcolonies, being progressively covered by a significant amount of secondary compounds (S n2- , S0, pyrite-like). Biooxidation mechanism is modified in the presence of supplementary As(V), as indicated by spectroscopic and microscopic studies. GDS confirms significant variations between abiotic control and biooxidized arsenopyrite in terms of surface reactivity and amount of secondary compounds with and without As(V) (i.e. 6 µm depth). CLSM and protein analyses indicate a rapid modification in biofilm from hydrophilic to hydrophobic character (i.e. 1-12 h), in spite of the decrease in extracellular surface proteins in the presence of supplementary As(V) (i.e. stressed biofilms).


Assuntos
Acidithiobacillus thiooxidans/metabolismo , Arsenicais/química , Biofilmes , Compostos de Ferro/química , Ferro/química , Minerais/química , Sulfetos/química , Arsênio/química , Interações Hidrofóbicas e Hidrofílicas , Microbiologia Industrial , Microscopia Confocal , Microscopia Eletrônica de Varredura , Oxigênio/química , Espectrofotometria , Análise Espectral Raman , Propriedades de Superfície
8.
Materials (Basel) ; 11(4)2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-29642522

RESUMO

Hybrid bionanocomposites based on cellulose matrix, with silica nanoparticles as reinforcers, were prepared by one-pot synthesis of cellulose surface modified by solvent exchange method to keep the biopolymer net void for hosting inorganic nanoparticles. Neither expensive inorganic-particle precursors nor crosslinker agents or catalysts were used for effective dispersion of reinforcer concentration up to 50 wt %. Scanning electron microscopy of the nanocomposites shows homogeneous dispersion of reinforcers in the surface modified cellulose matrix. The FTIR spectra demonstrated the cellulose features even at 50 weight percent content of silica nanoparticles. Such a high content of silica provides high thermal stability to composites, as seen by TGA-DSC. The fungi decay resistance to Trametes versicolor was measured by standard test showing good resistance even with no addition of antifungal agents. This one-pot synthesis of biobased hybrid materials represents an excellent way for industrial production of high performance materials, with a high content of inorganic nanoparticles, for a wide variety of applications.

9.
Glob Chall ; 2(7): 1700119, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31565337

RESUMO

Hybrid organic-inorganic materials based on cellulose matrix and silica particles are obtained from wastes of the local paper recycling mill and sugarcane mill as renewable secondary raw materials. The performance comparison of these hybrid materials made from secondary raw materials against the materials made from pure, raw sources is discussed. The Fourier transform infrared spectra show that cellulose features prevail even at 43 wt% silica nanoparticles in the hybrid materials. Such a high content of silica originated from sugarcane bagasse ash and hollow glass microspheres contributes to the high thermal stability of the final composites, as seen by thermogravimetric analysis with very low water absorption. This one-step approach of biobased hybrid materials represents an excellent way to produce high-performance materials with high content of inorganic nanoparticles for a wide variety of applications like energy efficient building material completely cement-free.

10.
Chemosphere ; 178: 391-401, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28340462

RESUMO

Total, bioaccessible and mobile concentrations of arsenic and fluorine are determined in polluted surface soil within the Comarca Lagunera region using standardized protocols to obtain a full description of the environmental behavior for these elements. The composition of mineral phases associated with them is evaluated with microscopic and spectroscopic techniques. Mineralogical characterizations indicate that ultra-fine particles (<1-5 µm) including mimetite-vanadite (Pb5(AsO4)3Cl, Pb5(AsO4, VO4)3Cl)-like, lead arseniate (Pb3(AsO4)2)-like and complex arsenic-bearing compounds are main arsenic-bearing phases, while fluorite (CaF2) is the only fluorine-bearing phase. Total fluorine and arsenic concentrations in surface soil range from 89.75 to 926.63 and 2.7-78.6 mg kg-1, respectively, exceeding in many points a typical baseline value for fluorine (321 mg kg-1), and trigger level criterion for arsenic soil remediation (20 mg kg-1); whereas fluoride and arsenic concentrations in groundwater vary from 0.24 to 1.8 mg L-1 and 0.12-0.650 mg L-1, respectively. The main bioaccessible percentages of soil in the gastric phase (SBRC-G) are estimated for arsenic from 1 to 63%, and this parameter in the intestinal phase (SBRC-I) fluorine from 2 to 46%, suggesting human health risks for this region. While a negligible/low mobility is found in soil for arsenic (0.1-11%), an important mobility is determined for fluorine (2-39%), indicating environmental risk related to potential fluorine release. The environmental and health risks connected to arsenic and fluorine are discussed based on experimental data.


Assuntos
Arsênio/análise , Monitoramento Ambiental/métodos , Flúor/análise , Poluentes do Solo/análise , Solo/química , Humanos , México , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...